Percutaneous uterine artery embolization for the treatment of symptomatic fibroids: current status

Tommaso Lupattelli a,∗, Antonio Basile b, Francesco Giuseppe Garaci c, Giovanni Simonetti c

a Department of Diagnostic Imaging, Istituto Policlinico San Donato, San Donato Milanese, Milan, Italy
b Department of Radiology, Ospedale Ferrarotto, Catania, Italy
c Diagnostic Imaging and Interventional Radiology Tor Vergata University, Rome, Italy

Received 15 December 2003; received in revised form 1 April 2004; accepted 5 April 2004

Abstract

Uterine artery embolization (UAE) is increasingly being used as an alternative treatment to hysterectomy for symptomatic fibroids. Symptoms of pelvic pressure, urinary frequency and menorrhagia are controlled in 73–98% of patients who undergo UAE. At the 1-year follow-up, the uterus may shrink by up to 55% but re-growth of fibroid may however occur. The rate of major complications and amenorrhea following this procedure is low, ranging in most series from 1 to 3.5% and 1 to 7%, respectively. Nevertheless, the rate of amenorrhea in women over 45 seems to be higher.

In order to completely block the arterial supply to the fibroid, UAE is typically performed in both uterine arteries. Different embolic agents are used such as polyvinyl alcohol, gelfoam and more recently gelatine tri-acryl microspheres. After UAE, perfusion of the uterus is maintained. Uterine function is therefore conserved and although women who become pregnant after UAE seem to be at risk for malpresentation, pre-term birth, cesarean delivery and postpartum hemorrhage, successful pregnancies after UAE have been reported in some series.

A major technical problem with UAE remains the possible presence of fibroid blood supply from other sources, such as the ovarian arteries or other pelvic branches, which can lead to failure of the procedure.

In conclusion, although randomized trials are still underway, UAE appears a good option for those patients who wish to conserve their fertility or when surgery is contra-indicated. However, to evaluate the long-term effects of UAE longer follow up is required.

© 2004 Elsevier Ireland Ltd. All rights reserved.

Keywords: Uterine artery; Embolization; Fibroid; Uterus

1. Introduction

Percutaneous transcatheter embolization has recently emerged as a highly effective and safe technique in a wide variety of diseases, including obstetric and gynecologic disorders. The first case of embolization was carried out by Rosch et al. in 1972 in an effort to control an acute gastrentestinal bleeding [1]. The first cases of percutaneous transcatheter uterine embolization for obstetric and gynecological bleeding were performed 7 years later, in 1979 [2]. Nowadays, embolization of the uterine artery (UAE) often plays a decisive role in the management of such disorders [3–5].

The first attempt at percutaneous transcatheter artery embolization for the treatment of uterine fibroids (or leiomyomas) was made by Jean Jacques Merland et al. at Lariboisiere Hospital Paris in 1989. This case, performed as a treatment preceding myomectomy to reduce the risk of hemorrhage, was only reported in the English literature in 1995 [6]. Percutaneous transcatheter uterine artery embolization (UAE) for fibroids is therefore a rather recent procedure. Nevertheless, at some institutes this technique is already being performed routinely.

Uterine leiomyoma is the commonest benign tumor of the female genital tract occurring in about 25% of women of reproductive age [7]. Its incidence is higher in Afro-Caribbean women, and in these patients presentation tends to be at a younger age than in Caucasians [8]. Most fibroids do not cause symptoms, and therefore do not require intervention. Treatment is needed if they grow large enough to cause...
pressure on other organs, such as bladder or bowel. Treatment is also needed if they grow rapidly, cause abnormal bleeding or recurrent miscarriage. Abnormal bleeding can be however caused by other afflictions of the uterus such as adenomyosis, an abnormal presence of endometrial glands and supporting tissues in the myometrium.

Fibroids are classified by their location. Fibroids inside the uterine cavity (submucous type) will usually cause bleeding between periods (menometrorrhagia) and often cause severe cramping. However, in general submucinous myomas are partially in the cavity and partially in the wall of the uterus. Besides bleeding between periods, these fibroids are also likely to cause heavy menstrual periods (menorrhagia). Finally, fibroids entirely sited in the myometrium are classified as intramural whereas those located in the external portion are known as subserous; these two types of fibroids that may reach a large size before giving symptoms usually present with pelvic pain or increased pelvic pressure. Women may experience a sense of pelvic fullness, pressure on the bladder with difficulty voiding or urinary frequency and urgency. If pedunculated, large subserous leiomyomas are most likely to compress the surrounding organs, leading in some cases to bowel obstruction and/or ureteral compression. A pedunculated subserous fibroid may also twist and undergo necrosis, giving rise to acute abdominal pain.

Several studies show that UAE is effective in controlling symptoms of menorrhagia, dysmenorrhoea, urinary frequency and other pressure effects. According to a survey of the SCVIR membership conducted in October 2000, the number of UAE procedures documented worldwide is 10,501, with 8644 in the United States[9]. To date more than 25,000 UAE procedures have been performed.

The purpose of this paper is to provide a comprehensive overview of UAE for the treatment of fibroids.

2. Pre-treatment evaluation

Pre-procedural evaluation plays a primary role for the successful outcome of UAE. Although in many cases UAE is performed without biopsy, when bleeding is present, an endometrial sample should be obtained to rule out the eventuality of endometrial cancer. It is also extremely important that the gynecologist ensures that symptoms are due to fibroids rather than other diseases and particular attention should be paid to those features that may be atypical of fibroids. Pregnancy should be excluded and any infection treated prior to UAE. Chronic salpingitis or endometritis, ovarian cysts, tubal inflammation and endometriosis are not regarded as absolute contraindications to the procedure but they may be associated with an increased risk of life-threatening infection after UAE [10].

To best evaluate post-treatment amenorrhea patients under 45 should have an FSH level assessment on the third day of their cycle [11]. Theoretically, an increase of FSH level up to 50mIU/ml after embolization is considered a consistent indicator of ovarian failure [12]. During UAE uterine arteries vasospasm may occur, leading in some cases to technical failure of the procedure. Vasospasm is also thought to have an iatrogenic origin related to the use of analogues of gonadotropin releasing hormone (gon-Rh). For this reason, some authors suggest their patients stop medical treatment 1 or 2 weeks before the procedure [12,13].

Appropriate counseling prior to embolization with details of the procedure and its potential complications is mandatory. Patients should carefully be informed by the interventional radiologist that, should they develop signs of infection after the treatment, they could be re-admitted and, in case of severe infection, undergo hysterectomy [14]. Patients should also be informed about the unknown long term results of UAE on the uterine vascularization and functionality.

3. Indications and contraindications

Only 10–20% of the women who have fibroids require treatment. Depending on the size, location and number of fibroids, they may cause a large variety of symptoms (Table 1); UAE should be offered only to women who have been advised hysterectomy or multiple/difficult myomectomy for such complaints as menorrhagia, dysmenorrhoea and dyspareunia and pressure effects of the fibroid on the urinary or gastrointestinal tract but wish to avoid surgery. Infertility and recurrent miscarriage should not currently be regarded as a valid indication for UAE treatment without a controlled clinical trial and without appropriate approval by an ethics committee. UAE can also be offered when surgery has previously failed, to women not clinically suitable to undergo surgical intervention or who are unwilling to receive a blood transfusion.

Whether this procedure is safe for women desiring future fertility is controversial. Women who become pregnant after UAE seem to be at risk for malpresentation, pre-term birth, caesarean delivery and postpartum hemorrhage [15]. To date no clinical studies have yet been published in literature describing UAE on pregnant women. However, in pregnancy...
UEA is unlikely to cause serious problems for the mother but might lead to abortion of the fetus.

Contraindications to UAE are listed in Table 2. To date, this procedure has proven to be safe and without particular risks. Any sign of gynecological infection should therefore be diagnosed and treated before UAE. Chronic salpingitis or endometritis may increase the chance of life threatening infection following fibroid embolization. As mentioned earlier, if either of these is suspected, in addition to a clinical exam and imaging studies, an endometrial sample should be obtained.

With regard to the type of leiomyomas particular care should be used when UAE is selected for pedunculated submucous, pedunculated subserous or large fibroids (>8.5 cm) [14,16,17]. Once pedunculated submucous fibroids are embolized, their spontaneous extrusion through the vagina may occur, with the largest ones often becoming impacted in the cervix. Patients treated by UAE for pedunculated submucous fibroids should be therefore warned that they could be re-admitted should they develop signs of obstruction of the cervical os. In such a case, to avoid catastrophic uterine sepsis and hysterectomy, manual or surgical dilatation of the cervical os. In such a case, to avoid catastrophic uterine sepsis and hysterectomy, manual or surgical dilatation and curettage of the uterus is to be performed. Patients should be also warned that extrusion of pedunculated submucous fibroids might occur several months after UAE as well [14]. The choice of UAE for pedunculated subserous fibroids and fibroids larger than 8.5 cm may instead lead to early or late treatment failures. Indeed, after UAE, large leiomyomas may show residual vasculization, pedunculated subserous leiomyomas may have parasitized blood supply from other pelvic vessels, with their incomplete infarction as a result. Furthermore, once embolized, pedunculated subserous fibroids may also slough into the abdominal cavity and become infected or cause significant intra-pelvic adhesions [16,17].

4. Imaging

Type, volume and location of fibroids may be assessed by ultrasound (US) and/or magnetic resonance (MR). Currently, the latter is regarded as the preferred tool for pre-operative evaluation and measurement of fibroids [18,19]; it allows to exclude presence of concomitant lesions in the pelvis as well as recognize adenomyosis and those types of fibroids such as pedunculated submucous that need close follow-up once embolized (see below). Burn et al., in a study performed in 34 patients, reported that an increased signal intensity on T2-weighted images pre UAE is usually associated with a considerable reduction in fibroid size after embolization. On the contrary, increased signal intensity of fibroid on T1-weighted images pre UAE is a significant predictor of poor leiomyoma volume percentage reduction. According to the authors, fibroids with high signal intensity on pre-UAE T1-weighted images are likely to have already undergone hemorrhagic degeneration as well as loss of vascular supply and, as such, do not change markedly after embolization [20]. The findings on T2 weighted images reported by Burn et al. have recently been confirmed by Watson et al. in an accurate case series in which 114 consecutive women underwent MR scan before and 6 months after UAE. Nevertheless, as opposed to Burn et al., the authors concluded that a high signal intensity of fibroids on T1-weighted images pre UAE is rather uncommon and does not appear to alter the outcome [21].

The use of an arterial spin tagging technique (Extraslice Spin Tagging) seems to permit the assessment of tumor perfusion before and after uterine fibroid embolization, without the need for intravenous administration of gadolinium [22]. Moreover, MR provides better sensitivity and specificity than ultrasound to exclude the presence of all but stage I of carcinoma of endometrium and adenexal mass [23], and shows high accuracy in the assessment of adenomyosis which can be missed at US [24,25]. Although some encouraging reports have been published [26], the value of UAE in adenomyosis is still uncertain and failure of embolization of these lesions has been reported [27].

With regard to other modalities, CT does not show as much sensitivity as MR in the pre-procedural study of fibroids whereas Doppler flow measurements of uterine arteries can be useful in predicting variables associated with UAE. According to McLucas et al. a high peak systolic velocity (>64 cm/s) prior to UAE would be a significant predictor of embolization failure [28]. Unfortunately, it is not always possible to differentiate malignant tumors from fibroids at MR imaging or US; a few cases of embolization of uterine leiomyosarcoma initially diagnosed as fibroids have been reported [29,30]. Uterine sarcomas grow fast but because of the rapid growth shown by a considerable part of fibroids, the fast changing dimension of a leiomyoma is not a helpful criterion to make a diagnosis of cancer. Sarcomas can only be diagnosed by pathologic examination of resected or biopsied samples. Their prevalence in the population is however very low, accounting for about 0.2% of all fibroids. Parker et al. reported a study of 1332 patients who underwent hysterectomy or myomectomy for uterine leiomyomas. Only one of the 1332 patients

Table 2
Contra-indication to UAE for fibroids

<table>
<thead>
<tr>
<th>Absolute</th>
<th>Relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibroid infection</td>
<td>Pedunculated submucous leiomyoma</td>
</tr>
<tr>
<td>Refusal to undergo hysterectomy following peri- or post-UEA complications</td>
<td>Dominant pedunculated serosal leiomyoma</td>
</tr>
<tr>
<td>Actual pregnancy</td>
<td>Adenomyoma</td>
</tr>
<tr>
<td></td>
<td>Leiomyoma larger than 8.5 cm</td>
</tr>
<tr>
<td></td>
<td>Desire of future pregnancy</td>
</tr>
<tr>
<td></td>
<td>History of allergic reaction to contrast medium</td>
</tr>
</tbody>
</table>

...
operated on for presumed leiomyoma was found to have a leiomyosarcoma. Also, this woman was the only one found to have a sarcoma among 371 patients operated on for rapid growth of the uterus [31]. However, although the prevalence of leiomyosarcoma in the general population is low, its presence should be always suspected in women showing rapid growth of the uterus and ruled out carefully prior to UAE.

5. Procedure

5.1. Anaesthesia and sedation

There are a variety of sedation/analgesia protocols for UAE. Conscious sedation is actually the most commonly used method to control pain throughout the procedure. When this modality is selected, a patient-controlled analgesia (PCA) pump with intravenous administration of morphine is started before commencing or at the time of the procedure and continued for 24 h. Other authors prefer the use of a mixture of 0.1 µg fentanyl and 10 mg midazolam intravenously at the time of UAE followed by PCA pump with 60 mg morphine and 6 mg droperidol until discharge [32]. Also, the use of 30 mg intravenously administered ketorolac alternated with 2 g intravenously administered paracetamol every 6 h until discharge can be considered [33].

Some authors advocate spinal and epidural anesthesia as being a valid alternative to conscious sedation. The advantages and disadvantages of spinal and epidural anesthesia are reported in Table 3. General anesthesia is rarely selected; it increases the risk of general complications and prolongs recovery time.

An anti-inflammatory suppository and an anti-emetic should be given before UAE [32]. Although their efficacy has never been demonstrated, prophylactic antibiotics before UAE are usually administered as tissue necrosis may predispose to infection. However, under antibiotics coverage a lower incidence of sepsis of other organs in the abdomen after embolization has been reported [34]. Prophylactic antibiotics are not given after the procedure [35,16].

5.2. Technique

Several different techniques utilizing a variety of catheters to access the uterine arteries have been described [13,36–38]. The right femoral artery is most commonly punctured but some operators advocate the use of a bilateral femoral approach to facilitate the procedure. This enables the selective catheterization of the contralateral internal iliac artery, which is usually easier than the ipsilateral. A simultaneous bilateral embolization can easily be performed (two radiologists are needed) thus reducing the screening time. The disadvantages are the need for two puncture sites, and a possibly higher complication rate at the groin. When a single approach is preferred, a five French cobra catheter (Boston Scientific Corp., Watertown, MA) or a Levin catheter (Cook Inc., Bloomington, IN) is most frequently utilized to catheterize the contra lateral internal iliac artery and, by means of the Wallman maneuver (to form a sidewinder-like shape), the ipsilateral as well [39].

The uterine arteries are usually enlarged and tortuous [40]. The enlargement of these arteries secondary to the hypervascular fibroids actually makes catheterization easier, although the increased tortuosity of the vessels can diminish this advantage. In cases of small highly tortuous and narrow uterine arteries, or when spasm has occurred, the use of a three Fr coaxial catheter may be needed [41,35]. However, in a series of 197 women who underwent superselective bilateral uterine artery embolization Pelage et al. reported successful results in up to 90% of patients treated with a five Fr cobra catheter alone [13].

5.3. Embolic materials

Various embolic agents are currently available to embolize uterine arteries but none of them has as yet clearly been shown to provide substantial advantages or a better outcome [42]. Thus, their choice is a personal matter. However, since UAE is a relatively new procedure, the long-term effects of some of these agents remaining permanently in the women’s bodies are currently unknown. Adverse effects have been previously reported for many “unknown” agents, therefore it must not be forgotten that the use of new materials, particularly the use of tris-acryl microspheres (to be discussed later)
is still too new to document as to what the additional long-term effects might be. Although there is little evidence in the literature of potential and serious adverse effects following transcatheter injection of embolic agents for the treatment of fibroids, a tris-acryl microspheres (Biosphere Medical, Rockland, MA) related death has been recently reported [43]. Initially, uterine embolization used to be performed by injecting polyvinyl alcohol (PVA) particles exclusively [6,44]. PVA, a semi permanent occlusive agent with a limited potential for recanalization [45,46], is legally marketed for the general indication of vascular embolization, and it can legally be used by a physician for this type of surgery; however, it has not been specifically cleared for UAE. To date, the use of PVA particles for UAE represents an off-label use of an FDA-approved device. PVA is easy to deliver as well as relatively inexpensive. Different sizes of PVA ranging from 150–300 to 500–700 µm range are available and this agent is still utilized by many physicians for the treatment of fibroids [36,46]. The smaller particles are more likely to lead to better devascularization of the leiomyoma as well as to a higher rate of complete resolution of the symptoms [47]. Conversely, the frequency of an ischemia related complication (i.e. pelvic pain) observed with the use of 150–300 is higher than that observed in studies performed with 300–500 or 500–700 µm ranges particles [42,44]. Most of the time, the use of larger particles results in a more proximal occlusion of the uterine artery, so lowering the risk of uterine infarction and non-target embolization through utero-ovarian collaterals. On the other hand, a good devascularization of the lesion cannot always be achieved with larger PVA particles. Finally, it is important to take into account that when PVA is mixed with a saline solution or contrast agent, it tends to aggregate and may clump within the vessels or the catheter itself. Although adequate dilution of PVA reduces the risk of clumping, its behavior throughout embolization of leiomyoma remains unpredictable. For this reason, some operators prefer the use of tris-acryl microspheres (Embo-spheres, Biosphere Medical, Rockland, MA), previously applied to neuroradiology [48]. Tris-acryl microspheres are calibrated and on the whole do not aggregate, thus leading to a more controlled devascularization of uterine fibroids. Moreover, because of their elastic features, microspheres can be more easily injected through a microcatheter. The initial clinical experience using calibrated microspheres for the treatment of leiomyoma is promising [49,50]. Tris-acryl microspheres have been recently approved for UAE by the Food and Drug Administration. Some researchers advocate embolization with gelatine sponge (Gelfoam, Pharmacia & Upjohn Co., Kalamazoo, MI) as opposed to PVA without any substantial difference in outcome [51,52]. Gelfoam is a temporary agent and its use has been suggested for women who wish to preserve their fertility because of the possible recanalization of the uterine arteries after few days from the procedure. However, whether the uterine arteries recanalize following embolization with gelfoam is still unknown. Further studies are needed to determine the long-term recanalization rate of these vessels. To date, Geolfam has not been specifically cleared for UAE.

5.4. Potential problems

In order to achieve good devascularization of the lesion, both uterine arteries are embolized; most of the time, indeed, anastomoses between right and left uterine arteries and/or [53,54] between uterine and ovarian arteries are present [54–56]. They are likely to become more evident after a successful embolization, leading at times to incomplete fibroid infarction or more dangerously to ovarian failure. In a post-operative study of leiomyomatosus uteri, Sampson et al. reported evidence of immediate filling of the contralateral uterine artery and both ovarian arteries after repeated injections into one uterine artery [40]. Moreover, in about 10% of the cases, the ovarian arteries, which arise from the anterior surface of the aorta (approximately at the level of L2), seem to provide direct supply to the uterine fundus [54,57]. The lack of response to embolization observed in some patients may be due to perfusion to the fibroids by these vessels [53,55,58–60]. For this reason, many physicians complete the procedure with an aortogram to exclude the presence of any residual supply to fibroid by enlarged ovarian collaterals. If it is suspected that the ovarian flow is continuing to supply the leiomyoma, a selective study of ovarian arteries should be performed. When their vascular contribution to the lesion is significant, injection of gelfoam into the proximal portion of these arteries should be considered [57]. Nevertheless, after ovarian embolization the risk of ovarian failure may increase.

Congenital absence of one uterine artery with only the ovarian artery supplying the uterus is very uncommon [59]. However, when present, it does not represent a contraindication to UAE: a recent study suggests that patients with a congenitally absent uterine artery may respond with similar success to those who undergo bilateral embolization [61].

5.5. Radiation dose

Fluoroscopy time during UAE procedures is an important consideration because women who undergo UAE are generally young and potentially fertile and the ovaries are in the fluoroscopic field during the procedure. Screening time decreases with operator experience and often angiographic runs are unnecessary. Magnified and oblique fluoroscopy should be limited as much as possible. The mean estimated absorbed ovarian dose is 22 cGy with a mean fluoroscopy time of 22 min [62]. The radiation exposure during this procedure is estimated to be about 6000 cGy cm², not far from the mean pelvic radiation dose for one to three barium enema examinations [63,64]. Pulsed fluoroscopy can reduce the dose of radiation by between one third and one half when compared with non-pulsed fluoroscopy [65,66]. The radiation dose associated with UAE is unlikely to cause patient injury or a significantly increased genetic risk of future children [62].
6. Post-procedural care

Patients should have bed rest for 12 h after the procedure, and then be evaluated for possible discharge. The immediate postoperative course is often characterized by intense pelvic pain, which generally starts at the end of embolization and lasts for nearly 24 h. Because UAE is meant to cause central necrosis of the fibroid, pain indicates successful infarction and could be a positive predictor of clinical outcome. Nevertheless, the correlation between the severity of pain and the outcome does not seem to show significance [67]. For the pain control women should be kept on PCA in the early postembolization period and an adequate pain relief protocol established. Different protocols have been evaluating pain control. They include oral nonsteroidal anti-inflammatory drugs, or NSAIDs (typically ibuprofen) and an analgesic drug (paracetamol) every 6 h, or in case of severe pain every 4 h. Where pain is severe, opioids such as morphine sulphate may be preferred. Morphine can be administered either with intermittent dosing by the nursing staff or via a PCA pump. It has been reported that a good analgesia regimen along with careful counseling enable UAE to be performed as an outpatient procedure. In a study by Hurts et al., the rate of patients re-admitted to the hospital for pain control was only 15% [68]. In another study, Siskin et al. reported a 95.9% successful discharge after 8 h of post-procedure observation. The patients were discharged home under a specific medication regimen consisting of prochlorperazine, ketorolac, meperidine, and hydrocodone [69].

Approximately 20–35% of patients experience a post-embolization syndrome (PES), which in 10–15% of cases may also lead to a delayed re-admission [70,36]. Post-embolization syndrome starts 1–5 days after UAE, but sometimes it may occur later. Generally, the larger the volume of tissue embolized, the greater the severity of pain [71,47]. PES is due to a pyrogenic reaction (fever production) of the body caused by breakdown products from the fibroid. It is more common when very large fibroid masses are embolized. Patients evidence a high fever, raised inflammatory markers, nausea, vomiting, discomfort at the site of embolization, high blood cell count (without a left shift) and negative cultures. Post-embolization syndrome usually resolves in 7 days using either nonsteroidal anti-inflammatory or analgesic drugs [47]. Unfortunately, it may be difficult to differentiate PES from infection. The latter is characterized by delayed pain, purulent discharge, fever and leukocytosis with a left shift [72]. It is extremely important not to confuse post embolization syndrome with infection.

7. Complications

Complications can be divided into six categories (Table 4). Angiography related complications are intrinsic to all angiographic embolization procedures and minimized by operator experience and good technique. Fibroid embolization related complications are relatively rare but dissection of the uterine artery during catheterization or rupture of a vesical artery branch has been reported [73]. Post-embolization syndrome and infection are the most unpredictable complications. The latter, if unrecognized or untreated, may even lead to septicaemia and death. Currently, there are five known deaths related to UAE: three have been described in the literature whereas the remaining two have not yet been reported. Of the reported deaths, two were due to infection [43,74], and one was due to pulmonary emboli [75].

Deep venous thrombosis leading to pulmonary embolism is a rare event after UAE. The mechanism of deep venous thrombosis is thought to be related to a derangement of the clotting cascade due to tissue necrosis of fibroid. For this reason, some clinicians advocate leg pressure stockings to eliminate venous stasis, while others advocate the use of heparin, particularly in women with a history of deep venous thrombosis.

Infection is the most worrying complication of UAE, it occurs in 1–2% of patients and may be due to the necrotic process within the fibroid [32,35,36,47]. Unfortunately, infection may take place even several months after the procedure. To reduce the risk of infection it is highly advisable to use pads rather than tampons. Patients should also avoid sex for at least 20–30 days after UAE. The rate of infection is thought to be higher in patients with large pedunculated subserosal fibroids, or with fibroids such as submucosal types, where direct contact with intra-cavitary germs may occur [47]. However, further studies are needed to definitely validate that this complication is more likely to occur in patients with these types of fibroids. When infection or ischaemic necrosis of the uterus is noted,
patients should be re-admitted and put immediately on antibiotics; in cases of medical therapy failure, patients will undergo surgery. Hysterectomy following UAE has been most commonly quoted between 1 and 3.5% [32,35,47,76,77] but its total incidence may be even higher [36]. In fact, besides the infection of the uterus, other factors such as comorbid disease, UAE clinical failures, new disease and fibroid extrusion may lead to surgery. Fibroid extrusion is a well-known complication [78] that is more likely to occur in patients with pedunculated submucosal fibroids. It accounts for 1–5% of all cases and it is sometimes associated with infection of the uterus, especially when the entire leiomyoma is not expelled and necrotic debris cannot be removed [14,76].

Amenorrhea may be permanent or temporary and is more likely to happen in peri-menopausal women. In a recent prospective study performed to assess the effect of UAE on ovarian function in young women (average 34 years) no clinically relevant adverse effects on normal functioning ovaries were noted after the procedure in all of 32 patients [79]. In comparison, the risk of amenorrhea markedly increases in women over 45 years; the rate of ovarian failure following UAE in these patients has been estimated at 15–43% [80,81].

The cause of ovarian failure after UAE is not fully understood; since collaterals between uterine and ovarian arteries are not uncommon, migration of the embolic material into the ovarian vasculature through these collaterals during UAE has been advocated by some authors as a possible factor leading to the transient or permanent amenorrhea after the procedure. These vascular connections might also explain the higher rate of ovary failure described in older patients following UAE; according to some authors, if during UAE a number of embolic particles migrates in the ovari vasculature, amenorrhea is more likely to happen when, as in older women, ovary blood supply and total functional reserve is already reduced [80,81]. A diversion of blood flow to maintain the viability of the uterus following a sudden occlusion of both uterine arteries has been also advocated as a further possible factor causing ovarian failure. Indeed, a sudden diversion of the ovarian flow towards the uterus might lead to ovarian under-perfusion [82]. It has been also postulated that ovarian function could be influenced by the occlusion of the uterine arteries themselves [83]. This observation has been also supported by another study: Ryu et al. reported that 50% of the women who undergo UAE show at Doppler examination a decrease in the ovarian flow after the procedure [84].

Chronic vaginal discharge is another common complication. In a large series by Walker et al., persistent cyclically discontinuous discharge was observed in 13% of the women. Of these, 4% described their discharge as a major irritant or very troublesome as well [32]. Vaginal discharge may start shortly after the procedure and have an unusual brown color without being associated with other symptoms. Occasionally, even tissue can be seen. This is not of any concern, and merely indicates the elimination of breakdown products from degenerating fibroids.

Other complications include alteration of uterine physiology or non-target embolization of the cervicovaginal branch, pelvic vein thromboses, menstrual irregularity, premature menopause and foul vaginal odor coming from infected necrotic tissue inside the uterus; non-target embolization of the cervicovaginal branch has been advocated by some authors as a cause of sexual function disruption but this issue is still highly controversial [85]. However, no clear scientific evidence of such complication has yet been reported in the literature. Finally, other complications which are theoretically possible include radiation skin burns, rhadomyolysis with renal damage and intrauterine growth retardation. Post embolization syndrome should be considered a complication when the hospitalization time exceeds 48 h or patient readmission is needed [10].

8. Follow-up

Imaging follow-up is commonly carried out by US or MR. Imaging follow-up should be used [20–22]. Nowadays, MR is considered the best modality for quantitative assessment of signal intensity and morphologic changes of leiomyomas before and after UAE [20,86–88]. The majority of leiomyomas show a similar change in signal intensity after UAE; the appearance of a “bag of blood-products,” as recently reported by Jha et al. [87] well describes the leiomyomas following embolization. This appearance is due to high signal intensity on T1-weighted images, homogeneous low signal intensity on T2-weighted images, and no detectable enhancement after injection of gadopentetate dimeglumine.

The patients should be regularly reviewed as outpatients for at least 6 months to detect any treatment failures. Imaging follow-up should include transvaginal or transabdominal US and/or MR at 12 weeks, 1 year and 2 years after the procedure. For longitudinal studies, the American Reporting Standards for UAE suggest follow-up intervals of 1, 3, 6, 12, 18, 24 months [10].

9. Clinical outcome

Review of the published data reported in Table 5 [32,35,36,47,51,69,73,76,77,89–93] shows a high technical success of UAE, ranging between 81 and 98%. Symptoms of menorrhagia and pelvic pressure are controlled in 73–97% of the patients. Fibroids and uterus shrink by up to 55% of their volume within 1 year and the latter continues to shrink over time. Just a small number of patients do not improve with this treatment, and the reasons for failure have not yet been fully identified. Leiomyoma recurrence (or late failure) after UAE may also occur but to date few cases have been described in the literature. Nevertheless, in a recent study on fibroid embolization the recurrence rate resulted to be as high as 10% at just little more than 2 years
Table 5

<table>
<thead>
<tr>
<th>Reference</th>
<th>Number of patients</th>
<th>Technical success rate (%)</th>
<th>Fibroid volume reduction (%)</th>
<th>Symptomatic improvement (%)</th>
<th>Hysterectomy rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ravina et al. [89]</td>
<td>88</td>
<td>89</td>
<td>69</td>
<td>10</td>
<td>–</td>
</tr>
<tr>
<td>Walker et al. [35]</td>
<td>200</td>
<td>98</td>
<td>69</td>
<td>79</td>
<td>1</td>
</tr>
<tr>
<td>Goodwin et al. [36]</td>
<td>60</td>
<td>81</td>
<td>50</td>
<td>80</td>
<td>10</td>
</tr>
<tr>
<td>Hutchins et al. [73]</td>
<td>365</td>
<td>96</td>
<td>48</td>
<td>92</td>
<td>2</td>
</tr>
<tr>
<td>Spies et al. [92]</td>
<td>61</td>
<td>91</td>
<td>78</td>
<td>89</td>
<td>0</td>
</tr>
<tr>
<td>Pelage et al. [47]</td>
<td>80</td>
<td>95</td>
<td>52</td>
<td>90</td>
<td>1</td>
</tr>
<tr>
<td>Siskas et al. [69]</td>
<td>49</td>
<td>98</td>
<td>–</td>
<td>88.5</td>
<td>2</td>
</tr>
<tr>
<td>Andersen et al. [76]</td>
<td>62</td>
<td>97</td>
<td>68</td>
<td>76</td>
<td>–</td>
</tr>
<tr>
<td>McLacue et al. [77]</td>
<td>167</td>
<td>98</td>
<td>37</td>
<td>88</td>
<td>3.5</td>
</tr>
<tr>
<td>Spies et al. [92]</td>
<td>200</td>
<td>99</td>
<td>38</td>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td>Katsumori et al. [51]</td>
<td>60</td>
<td>98</td>
<td>70</td>
<td>97</td>
<td>0</td>
</tr>
<tr>
<td>Walker and Pelage [32]</td>
<td>400</td>
<td>99</td>
<td>73</td>
<td>73–90</td>
<td>2.25</td>
</tr>
<tr>
<td>Trasporti et al. [91]</td>
<td>58</td>
<td>96.5</td>
<td>86</td>
<td>87</td>
<td>–</td>
</tr>
<tr>
<td>Piot et al. [93]</td>
<td>555</td>
<td>97</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

From [32,35,36,47,69,73,76,77,89–93].

follow up [55,94]. Further studies are needed to determine the true incidence of either early and late treatment failures after UAE.

Successful full term pregnancies have occurred following UAE, when performed for a variety of causes. The first report on uneventful pregnancy after UAE, although carried out for the treatment of a uterine vascular malformation, was published in 1995 [95]. In 2001, Ravina et al. described the first cases of pregnancy after UAE embolization. Among 12 pregnancies observed in 9 women (median age of 41 years at first pregnancy outcome) after UAE, seven resulted in successful outcome (three women delivered vaginally and four by cesarean section) [96]. Unfortunately, the authors did not mention the total number of women desiring pregnancy enrolled in their study. More recently McLucas et al. in a study performed on 50 women less than 40 years old, reported a term pregnancy rate of 33% and a normal term deliveries of 20% (10 patients) [77]. However, in an analysis of the first 50 cases reported in the literature, women who became pregnant after UAE for fibroids were at a higher risk, compared to the general population, for premature delivery (22% versus 5–10%), miscarriage (32% versus 10–15%), postpartum hemorrhage (9% versus 4–6%), breech presentation (22% versus 5%), and cesarean section (65% versus 22%). Women who became pregnant after UAE for any cause were also at increased risk of premature delivery (28%), miscarriage (22%), postpartum hemorrhage (13% versus 4–6%), breech presentation (17%), and cesarean section (58%) [15].

As a standard practice, and to ensure safe pregnancy McLucas et al. suggest that all women should be advised to wait for 6 months after UAE before any attempt to conceive [77].

Finally the quality of life at 3 and 6 months post-procedure has been addressed in a few series [46,98]. In a study by Spies et al. assessed the recovery time of 50 women following UAE, significant improvements in health related quality of life and fibroid specific symptoms were reported in all patients. As also suggested by the authors of this study, the measurement of health related quality of life and fibroid specific symptoms might also be used as a means of comparing the outcome of UAE with other fibroid treatments [97].

10. Surgical and non surgical options

 Fibroids are the commonest cause of hysterectomy. In the United States, an estimated 600,000 hysterectomies are performed each year [99] while in the UK the number of hysterectomies exceeds 70,000 in National Health Service hospitals [100]. Hysterectomy is a major operation involving a hospital admission of 4–7 days with 1–2 months of convalescence. Aside from the morbidity of hysterectomy, complications can occur with blood transfusion being required in a few cases. The mortality and complication rates for hysterectomy are 0.2 and 5–10%, respectively [101–103]. There is a higher risk of one or more complications after abdominal hysterectomy than after vaginal hysterectomy [103]. However, when hysterectomy is performed for benign fibroids the risk of complication is markedly reduced accounting for 6% of all procedures [104].

The costs of both procedures have been compared in two retrospective studies [104,105]. In the first study, the hysterectomy facility costs were estimated as US$ 4914, 3954 and 3116 for laparoscopic, open, and vaginal procedures, respectively, and the facility cost of UAE compared favorably with hysterectomy. Specifically, it ranged from US$ 2058 to 4951 and the mean total cost resulted to be US$ 3080 [105]. Nevertheless, this study was limited by small sample size, the use of charge data converted to costs, and insufficient information about patients characteristic. Conversely, a more recent and detailed study by Molly et al. concluded that the mean total hospital costs of UAE are significantly higher than hysterectomy (US$ 8223 versus US$ 6046, P < 0.0001) [106]. To date, although randomized tri-
als comparing results and costs of both procedures are still underway (i.e. EMMY and REST), it is not possible to predict whether the UAE will be preferred to hysterectomy in the first approach to fibroids [107]. However, the first results of a Spanish randomized and controlled trial are, over all, slightly favorable towards UAE. In detail, the mean hospital stay and period before resuming normal activities of the patients enrolled in this study were substantially shorter for the women who underwent UAE (40 patients) than for the women who underwent hysterectomy (20 patients); moreover, although the UAE patients made more emergency department visits, mainly due to post-embolization syndrome or pelvic pain, the percentage of patients with major complications was higher in the hysterectomy group. The major complications in the hysterectomy group (one deep venous thrombosis, three surgical wound abscess, two transfusion and one intra-abdominal abscess) accounted for 35% of all cases compared with 2% of all embolization procedures (1 deep vein thrombosis) [33]. However, the higher rate of complications reported in the hysterectomy group was mainly due to abscess that, according to the present authors, is not highly representative for the complications after hysterectomy [104].

Apart from hysterectomy, fibroids may be removed by hysteroscopic resection, surgical or laparoscopic myomectomy. Myomectomy, especially when it is carried out surgically, may be associated with increased blood loss and post-operative morbidity and in some cases, additional procedures may be required [108,109]. The success of myomectomy has to be still evaluated since no randomized trials against expectant management have ever been carried out. However, myomectomy may lead to adhesion formation within the abdominal cavity, which may further impair fertility [110,77]. A study from Stanford [111] comparing UAE with myomectomy showed superior results in the former group with regard to symptoms of menorrhagia and complication rates (4% versus 19%). These data did not differ significantly from those successively reported by McLucas–Adler in a similar study [112]. Myomectomy seems not to compare favorably with UAE also in terms of post-procedure pregnancy [77]. On the other hand, as opposed to women in whom myomectomy is carried out, patients who undergo embolization are more likely to need further invasive treatment (surgery or further embolization) in the 3–5 years after the index procedure [113]. No detailed cost information on myomectomy is currently available in the literature.

Recently, laser ablation of uterine fibroids in an open magnetic resonance scanner [114] and percutaneous magnetic resonance-imaging-guided cryoablation [115] have been proposed as possible alternatives. These innovative techniques need, however, further evaluation.

Medical therapies include hormone treatment using gonadotropin-releasing hormone agonists. This treatment may be useful in specific instances and for the short term control but requires continued medication and frequently presents side effects such as hot flushes, mood swings, insomnia and dyspareunia. Hormonal therapy does not lead to a definitive cure and once stopped fibroids re-grow to their original size within months [116].

11. Conclusion

UAE is a promising non-surgical alternative for patients with menorrhagia and other fibroid specific symptoms and shows significant improvements in health-related quality of life. A good clinical and radiological assessment of the lesion prior to UAE is mandatory. Although US plays an important role in the study of fibroid, MR remains the preferred tool for the preoperative assessment and measurement of these tumors, and should always be considered in all patients before UAE.

The main advantages of UAE are its minimally invasive approach, low risk of procedure related complications and possibility for the patients to conserve fertility. Also, the morbidity and hospitalization time of UAE seem to compare favorably with the surgical alternatives but only the final results of randomized trials comparing surgical with radiological procedures will be able to designate the best option [117]. UAE has proven to be safe and effective even when performed on an outpatient basis with a low rate of pain related re-admission. However, a small number of patients do not improve with UAE and the reasons for failure have not yet been identified and reported.

Certainly, the initial results of UAE for fibroids are encouraging; but great care has to be taken, as UAE is still a new procedure with a follow-up limited to 8 years and unknown long-term effects on uterus devascularization. With regard to the treatment of adenomyosis, the safety and the efficacy of UAE is still uncertain.

References

[9] Society of Interventional Radiology. Uterine artery embolization survey. 10,580 procedures performed worldwide. Fairfax, VA. So-
[10] Goodwin SC, Bonilla SM, Sacks D, et al. The members of the re-
porting standards for uterine artery embolization (USEA) sub-
committee, the members of committee. Reporting standards for uter-
Metab 1972;34:671–5.
[12] Spoffelt L, Glass, R, Kase N. Clinical gynecologic endocrinology and
to complications from uterine fibroid embolization. Clin Radiol
artery embolization. Minim Inv Ther Interv Radiol 1999;8:429–
32.
[16] Spies JB, Roth AR, Bha RC, et al. Leiomyomata treated with uter-
ine artery embolization: factors associated with successful symptom
EG. Embolic agents used for uterine fibroid embolization. AJR Am
uterine artery embolization as primary treatment for symptomatic
[20] Stavrakis A, Schuster M, Smith TP. Antibiotic prophylaxis in
35.
for myomata results, complications and failures. Minim Inv Ther
for the treatment of uterine leiomyomatosis: midterm results. J Vasc
[23] Lipidovits J, Vargyasy S. Uterine artery embolization for uterine
[24] Ascher SA, Roth AR. Uterine artery embolization for the treatment of
1000.
[25] Sampson JA. The blood supply of uterine myoma. Suny Gynecol
[28] Al-Bak A, Fauth W. Uterine artery embolization in undiag-
[29] Broekmans FJ, Heitbrink MA, Hompes PG, Schoute E, Falke T,
Schoemaker J. Quantitative MRI of uterine leiomyomas during trip-
torsion treatment: reproducibility of volume assessment and pre-
35.
32.
[31] Spies JB, Roth AR, Bha RC, et al. Leiomyomata treated with uter-
ine artery embolization: factors associated with successful symptom
EG. Embolic agents used for uterine fibroid embolization. AJR Am
[34] Al-Bak A, Fauth W. Uterine artery embolization in undiag-
[35] Broekmans FJ, Heitbrink MA, Hompes PG, Schoute E, Falke T,
Schoemaker J. Quantitative MRI of uterine leiomyomas during trip-
torsion treatment: reproducibility of volume assessment and pre-
35.
[37] Al-Bak A, Fauth W. Uterine artery embolization in undiag-
[38] Broekmans FJ, Heitbrink MA, Hompes PG, Schoute E, Falke T,
Schoemaker J. Quantitative MRI of uterine leiomyomas during trip-
torsion treatment: reproducibility of volume assessment and pre-
35.
[40] Al-Bak A, Fauth W. Uterine artery embolization in undiag-
[42] Al-Bak A, Fauth W. Uterine artery embolization in undiag-
[44] Al-Bak A, Fauth W. Uterine artery embolization in undiag-
[46] Al-Bak A, Fauth W. Uterine artery embolization in undiag-
[48] Al-Bak A, Fauth W. Uterine artery embolization in undiag-
[50] Al-Bak A, Fauth W. Uterine artery embolization in undiag-


